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Pose Tracking Using Laser Scanning and Minimalistic
Environmental Models

Patric Jensfelt, Member, IEEE,and Henrik I. Christensen

Abstract—Keeping track of the position and orientation over
time using sensor data, i.e.,pose tracking, is a central component
in many mobile robot systems. In this paper, we present a Kalman
filter-based approach utilizing a minimalistic environmental
model. By continuously updating the pose, matching the sensor
data to the model is straightforward and outliers can be filtered
out effectively by validation gates. The minimalistic model paves
the way for a low-complexity algorithm with a high degree of
robustness and accuracy. Robustness here refers both to being
able to track the pose for a long time, but also handling changes
and clutter in the environment. This robustness is gained by
the minimalistic model only capturing the stable and large scale
features of the environment. The effectiveness of the pose tracker
will be demonstrated through a number of experiments, including
a run of 90 min, which clearly establishes the robustness of the
method.

Index Terms—Laser scanner, localization, minimalistic models,
pose tracking, sensor modeling.

I. INTRODUCTION

T HERE are many challenging problems which have to be
solved before we have all the methods needed for deploy-

ment of robots in ordinary domestic environments. One of them
is localization. Localization is the process of finding the position
and orientation of the robot, i.e., the pose. Knowing the correct
pose of the robot is a condition for the successful completion of
many of the tasks which a robot might be required to perform.

Localization can be thought of as consisting of two parts, ini-
tialization and maintenance. Initialization is often referred to as
global localization and consists of finding the pose of the robot
without any prior knowledge but a map. Building the map can
also be viewed as part of the initialization. Once the pose is
found, localization becomes the task of maintaining the estimate
of the pose, i.e., tracking the pose. In this paper, we will focus
on the latter, that is,pose tracking.

Much effort has been spent on modeling the world very accu-
rately, to achieve better performance. We chose to turn this up-
side down and instead ask ourselves how simple can the map be
and still be useful for solving the localization problem. There-
fore, one design criteria is to use as simple a model as possible.
A simple model has the potential of being very robust over time
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and provide means for having an efficient tracking system that
fits well in an autonomous system with limited computational
resources. The only requirement we pose on the localization
system is that it must not rely on altering the environment in any
way. This requirement rules out methods which rely on, e.g., bar
codes or active beacons.

A. Paper Outline

In Section II, related work on pose-tracking and localization
is discussed. The problem is defined and the assumptions made
are discussed in Section III. Section IV describes the overall
structure of the algorithm. A model for the odometry is devel-
oped in Section V, and Section VI is devoted to characterization
of the laser scanner used and the method for extraction of en-
vironmental features. Section VII contains experimental results
and conclusions, and a discussion can be found in Section VIII.

II. RELATED WORK

Given that localization is such an important component in any
mobile robot system, it is not surprising that many different ap-
proaches have been suggested in the literature. In this paper, we
will only briefly mention some of them, and we instead refer to,
for example, [1] for a more thorough survey. We conclude that
there are two prevailing categories of approaches, depending
on the modeling technique being used. These areparametric
methodsandgrid-based methods.

A. Parametric Methods

The idea of trying to extract features from the environment
is quite natural. Examples of highly specific features would be
labels on doors which specify the room it is leading to. In struc-
tured environments, such as most office areas, lines, corners, and
edges are common features. The features can be parameterized
by, e.g., their color, length, width, position, etc. Leonardet al.
[2] are quite firm in their conviction that feature-based methods
are superior, when they say“we believe that navigation requires
a feature-based approach in which a precise, concise map is
used to efficiently generate predictions of what the robot should
see from a given location.”The Kalman filter is a key compo-
nent in most implementations of parametric methods, providing
a good setting for pose prediction and sensor fusion.

An extreme example of feature-based localization is the work
by Christensenet al. [3] where a complete CAD model of the
environment is used for localization and pose tracking through
feature matching and three-dimensional recovery using stereo
vision.
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B. Grid-Based Methods

The parametric methods have the disadvantage that an ex-
plicit model is needed for all the information that is used. An-
other thought is to divide the work space into a grid where each
cell in the grid represents a part of the world. One advantage
of this approach compared to the parametric is the following
as Hager and Mintz [4] points out: “The grid-based method is
only an approximative solution, but it is much less sensitive to
assumptions about the particular form of the sensing system.”
Schiele and Crowley [5] conclude that the results using grids
“are comparable or more accurate than the ones we obtain
with previous work using a parametric model of segments ex-
tracted directly from sensor data.” Moravec and Elfes made
the grid-based techniques popular with their paper [6] in 1985
where the occupancy grid is presented.

Burgardet al. also use an occupancy grid representation for
the map. In [7], the knowledge of the robot’s position is stored in
another grid, a position probability grid, where the cells contain
the probability of the robot being at that pose. The method has
proven successful, but requires considerable amount of compu-
tational power. In [8], inspired by work in other research areas,
a sample set is used to represent the pose knowledge. Both ap-
proaches provide the means to do both pose tracking and global
localization.

III. PROBLEM DEFINITION AND ASSUMPTIONS

As was seen in Section II, the problem of pose tracking is
well studied in the literature and further efforts must be weighed
against the potential gain. In a system operating in a real world
setting, where localization is only a small, but yet important,
part of the whole integrated system, the computational resources
are limited. This, together with the fact that several tasks must
be performed simultaneously, e.g., localization, planning, and
obstacle avoidance, means that we should aim for low compu-
tational complexity. Artificial landmarks are often used to re-
duce the complexity of the localization problem. Here we do not
allow any artificial landmarks or any other form of engineering
of the environment. The reason for this is that the system should
be able to operate in a typical domestic or office environment.

Most robot platforms are equipped with wheel encoders,
odometry, that can be used to measure relative motion. This
means that if the initial pose is given, odometry can be used
to keep track of the pose, under ideal conditions. Such is not
the case in reality, where, for example imperfections in the
kinematic model of the robot and wheel slippage will cause the
pose estimation error to grow without bounds. Still, odometry
is a resource that should be utilized to make the problem of
localization simpler, as it is known to be very reliable over
short distances under normal circumstances.

To bound the error in the pose estimation, external sensors
must be used. These sensors can provide information about the
absolute position of the robot by associating measurements with
parts of the map. Sonar sensors have been used extensively in
localization research. The sonar sensor is reliable and cheap, but
it has clear limitations in its use. Due to the wide beam width, it
requires heavy post-processing to extract the important informa-
tion. The experimental platform under consideration is equipped

with a scanning laser sensor, also providing range data, but with
much higher angular resolution. Computation power can thus be
saved at the cost of a more expensive sensor. To make this deci-
sion, it is important that the increase in cost is justified. Even if
the SICK laser scanner is more than an order of magnitude more
expensive than the sonars today, the price will drop when the
market for it increases. This will make the arguments for using
sonar sensors even weaker. The reason why we do not even con-
sider vision as a sensor for solving the localization problem is
the lack of robustness and the computational cost of present vi-
sion algorithms. We do however acknowledge the large potential
of vision.

A. Environmental Model

To realize a low complexity pose tracking system, the choice
of environmental model is of course of great importance. We
believe that a parametric method is the best way to fully utilize
the simplicity of the model and propose to use a rectangular
model for each room. The choice of the rectangular model is
a design decision, aiming to capture only the most dominant
and stable features in the environment. This choice would of
course not be motivated in an outdoor setting, but as we here
concentrate on an indoor environment we find that it is justified.
The main benefit of the rectangular model is that it is very likely
to be robust over time. The more details that are used in the
environmental model, the less time it is typically valid. As the
sides of the rectangle correspond to walls, they are highly robust
over time. Lines were chosen over, e.g., points since points are
more likely to move than large scale lines. Points associated
with wall corners meet our requirements, but most points in the
environment stem from movable objects. Note that we do not
assume that the lines are parallel toor axes and also allow for
the case that nonrectangular models may be required for some
rooms. One more very clear advantage with using large scale
structures, such as lines, is there are not that many of them,
which makes the data association easier.

Let denote the environmental model which is a set of lines
, i.e.,

is described by its start point and end point ,
which gives it a direction. The direction is used to define from
which side the line can be seen. By our definition a line can be
seen if the direction of the line is from right to left when we look
at it.

B. Estimation

Given that we know the initial pose of the robot, a good ap-
proximation of the robot at every time instant can be calculated
using odometric information. Knowing the approximate pose of
the robot also makes the data association problem considerably
easier. Sensor data that is likely to belong to the walls (the sides
of the rectangle model) can be extracted effectively, and be used
for updating the pose estimate and thus bound the estimation
error.

There are many ways to mathematically handle a problem of
this nature. It is clear that it is an estimation problem and in
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some sense an optimization problem. How do we incorporate
the information that we get from the sensors, to calculate the best
possible estimate of the pose? In order to answer this, we need
to specify, best in what sense? As is often the case, we chose
to define best in the least square sense. The use of least square
estimation is justified by the fact that outliers are efficiently re-
jected through use of narrow validation gates that reject noisy
data prior to the model matching. We will furthermore assume
that the probability density function for the robot’s pose can be
represented by a unimodal function, that is, one having a single
maximum. This puts high demands on the data association. In
certain situations, a large uncertainty in the pose of the robot
might introduce ambiguities when associating data, leading to
a need for a multimodal description of the probability distribu-
tion. Given that the estimate is updated several times per second,
it is however reasonable to assume unimodality due to the use
of a sparse model of the environment.

C. State of the System

We assume the state of the system to be the pose of the robot,
. This means that we assume the world to be

stationary, or at least everything that is not stationary is to be
considered as noise, and as such cannot be used for localization.

IV. A LGORITHM

To perform the least square estimate of the robot pose in real
time, we need a recursive algorithm. The alternative would be
to keep all the information in a batch and do a complete calcula-
tion at every time instant. The price we pay for real-time perfor-
mance is that once a piece of information has been used and is
incorporated into the estimate of the pose, it is lost forever. That
is, we cannot go back and reconsider a decision concerning, for
example, data association.

We will use the Kalman filter framework that has been used
by numerous researchers (see, e.g., [9], [2], and [10]–[14]) and
proven to provide a good solution for sensor fusion. The Kalman
filter will give an optimal estimate of the pose given the infor-
mation at hand, assuming that the model of the system is cor-
rect and that all sources of noise are Gaussian. The Gaussian
assumption is normally not fulfilled, which yields a suboptimal
estimate. Despite the non-Gaussian nature of most real world
noises, the Kalman filter is still reported to perform very well
[2], [11], [12].

At our disposal for tracking the pose of the robot, we have
information from odometry and the laser sensor. The odometry
can be used for short-time predictions of relative motion and
the 180 scan from the laser sensor in combination with our
environmental model give evidence about the absolute pose of
the robot. The overall algorithm is shown in Fig. 1.

A. State Prediction Using Odometry

Let denote the estimate of the stateat time . Let
describe how the robot moves given the input. This function
is typically nonlinear and associated with some uncertainty. The

Fig. 1. The algorithm.

Fig. 2. Normally only two and in some cases three walls in a room is in the
field of view of the laser scanning over 180.

state of the system can thus be modeled as evolving according
to

(1)

where is noise, capturing the uncertainty of the odometric
model. This noise is assumed white and Gaussian. See Section V
for a more in-depth discussion about the function .

B. Feature Description and Selection

To describe the lines associated with the rectangular model
extracted from laser data, we use , where is the per-
pendicular distance to the line, is the orientation of the line,
and is the length of the line (see Fig. 3). The length of the line

is used to reduce the risk of making errors in data association.
We only consider line measurements that fulfill (in our
case m).

Fig. 2 shows a scene from one of the rooms in the environment
under consideration. As can be seen, the rectangular model only
captures the very large scale structure of the room and in most
cases offers only two features for tracking the pose. In Fig. 2,
these two features are the lower and the left wall. The upper wall,
which is also partly visible, results in a too short measurement
( ).
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Fig. 3. The parameters defining a line.

The laser scanner is sensitive to occlusions as all laser beams
stem from a point and thus an obstacle placed in front of the
sensor will render it more or less blind. Therefore, visible fea-
tures in neighboring rooms will also be considered for tracking
purposes. We have limited us to lines from neighboring rooms
as this has proven to be enough. The lines are stored in each
room and thus we do not have to loop through all lines every
time to determine what lines to consider. A line in the current
room is visible if it fulfills the following criteria.

• AngleDiff( (direction condition)
• (in field of view),

where and are the angles to the start and end point
of the line, respectively, and AngleDiff
The super script refers to sensor coordinates. A line in
a neighboring room is visible if it can be seen through the
door leading to that room, i.e., as follows.

• AngleDiff
AngleDiff where

and are the angles to the left and right door
post, respectively. Additional constraints will have to
be added to handle nonconvex polygonal line models.
For the pose update in a Kalman filter framework, we
need to predict the parameters of the line to be extracted
from the current state of the robot and the environmental
model. Introduce as the measurement function,
i.e., , where is
the measurement noise. We here let ,
where is the number of measurements. With the same
notation as in Fig. 3 we get

(2)

where is the distance to the line from the origin of
the world coordinate system and is the corresponding
angle, i.e., . This function can be ex-
pressed as the linear term . is given by

(3)

where

and .

C. Extended Kalman Filter

As the odometric model is nonlinear, the standard Kalman
filter equation cannot be applied, instead the extended Kalman
filter has to be used. The extended Kalman filter is typically di-
vided into two parts, often referred to astime-updateandmea-
surement-update. If we let denote the estimate of the state,
and for the covariance matrix, thetime-updatecan be written

(4)

(5)

where should be interpreted as the pose estimate at time
using sensor data up to and until time. is the process

noise matrix, capturing the uncertainty in the odometric model,
.

As all lines are extracted from the same laser scan, the
measurements are correlated and hence there is a nonzero
covariance between the measurement noises. To handle the
measurements correctly, this covariance must be accounted for.
To reduce the computational burden though, we have chosen
to neglect this covariance. By doing so, themeasurement-up-
date can be done sequentially. Let and

, with the corresponding notation
for the state covariance matrix. The measurement update can
then be done by looping over all (all visible features)
and performing

(6)

(7)

(8)

where is the measurement noise (discussed in Section VI-D.
The complexity of the Kalman filter update is linear in the
number of measurements. The algorithm as a whole is also
linear in the number of lines that are visible in each step as we,
for each of these lines, try to extract a corresponding line from
the laser scan.

V. ODOMETRIC MODEL

As with all sensors, a model of the odometry provides valu-
able information about performance and limitations. The aim is
a model that can be used in an iterative update procedure, such
as the Kalman filter. The model should provide an estimate of
the robot motion as well as the uncertainty in this estimate. It
is also desirable that the model be consistent in the sense that
it should give the same result independent of how the path is
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Fig. 4. The motion of the robot is approximated to be on arcs.

segmented. In [15], such a model is developed for a differential
drive robot. Here, as well as in [15], we consider robot motion
along arcs (see Fig. 4).

Let be the input to the odometric model,
where is the distance traveled along the arc and is the
change in motion direction. With this notion the radius of the
motion is given by

(9)

Note that where is the steer angle in robot co-
ordinates, measured by the encoders and assumed to be known
with negligible errors. A negative corresponds to turning
clockwise and a positive corresponds to turning counter-
clockwise. The odometric model can now be written

(10)

We assume that the errors of the two components of the odo-
metric input are uncorrelated.

VI. L INE EXTRACTION

Given a set of range readings known to originate from a mod-
eled line, it is easy to extract the line parameters. However,
before this can be done the data association problem must be
solved. Assuming we have an estimate of the robot pose, the
pose of a modeled line can be predicted. The design goal is
therefore twofold as follows: 1) classify each point as belonging
to a particular model line or as being an outlier and 2) estimate
the parameters of the lines. For this task we propose to use a
two-step approach, centered around two different line extraction
algorithms in combination with validation gates (see Fig. 5). The
first line extraction algorithm is robust against outliers, but pro-
vides only limited accuracy. The second step provides accuracy

Fig. 5. Using the predicted pose of the robot in combination with map
information, validation gates can be defined. The first step contains a local
range weighted Hough transform fed with data via a validation gate. The
second step is a least square method using data from a second validation gate.

assuming that the input data is “clean.” When the pose uncer-
tainty of the robot is small, the first step can be bypassed. In the
following sections, the different parts of the line extraction al-
gorithm are described in some detail.

A. Laser Characteristics

Before designing a method for extracting lines from sensor
data, it is important to know the underlying characteristics of
this data. The sensor we use is a PLS laser scanner from SICK
electro-optics. It gives 361 range readings, , cov-
ering a 180 field of view.

The range readings are quantized with step mm.
Fig. 6 shows a part of a scan taken against a wall approximately
5.5 m away from the sensor. The discretization is clearly visible
in the right subfigure, where the same data is shown with dif-
ferent scaling and circular arcs with 50-mm spacing. Due to the
gross discretization it is not easy to get an estimate of the under-
lying range distribution, i.e., given that the true range is, what
is the probability distribution function for measuring. To get
a better view of the underlying range distribution, we perform
an experiment where 100 range readings, ,
are collected at each of 50 ( ), tightly spaced posi-
tions in front of a wall. Let ( ) be the dis-
tance traveled toward the wall according to odometry. Fig. 7
shows a histogram over . Assuming the odometry to
have negligible uncertainty over the short traveled distance, the
spread in the figure is due to the error distribution inherent in the
laser scanner. This distribution clearly resembles a Gaussian. Its
standard deviation can be estimated to24 mm. The resulting
Gaussian is overlaid in Fig. 7. As the distance measurements are
quantized, only multiples of the quantization step can be mea-
sured, , . Assuming to be the true dis-
tance, the pdf for the measurements can be written

that is a sampled Gaussian. The variance in a mea-
surement error ( ) will, because of the quan-
tization, depend on the true distance according to

. Fig. 8
shows the corresponding standard deviation as a function of
true distance . We will make the simplifying assumption
that the standard deviation for the measurement error is inde-
pendent of the true distance and equal to the worst case, i.e.,
approximately 26 mm.
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Fig. 6. Segment of a scan taken of a wall�5.5 m away from the sensor. A line marking the location of the wall has been added to the left subfigure. The right
subfigure shows the range readings along with arcs with 50-mm spacing, clearly showing the discretization.

Fig. 7. The middle range reading from 100 scans taken at 50 closely spaced
distances from a wall. The distance traveled toward the wall has been added to
the range to get an estimate of the underlying distribution. The distribution is
approximated as Gaussian with a standard deviation of�24 mm.

Fig. 8. Standard deviation for measurement error as a function of true distance.

The laser energy propagates in a cone, just like the ultrasonic
energy of a sonar sensor. The difference is in the beam width.
The beam width of the laser is less than a degree whereas the
standard Polaroid sensor has a full beam width of approximately

25 . To be able to determine the beam width and hence the size
of the footprint, we performed a series of experiments. The laser
sensor is placed approximately 4.7 m away from two wooden
boards. By sliding the boards perpendicular to one laser beam
and monitoring the measurement, the size of the beam can be
estimated. When the boards are not detected, the measured dis-
tance will be the distance to the wall behind.

The boards can be separated approximately 20 mm and still
be detected. This separation at a distance of 4.7 m is equivalent
to a beam width of approximately 0.25. The size of the beam
that is capable of detecting that there is something in front of the
wall, but not necessarily correctly measure the distance, is ap-
proximately 0.43. That is, if only a small fraction of the beam
is reflected by an object, a phantom measurement might arise
with a distance corresponding to a nonexisting object at a dis-
tance somewhere between the closest object and the one behind.
As the laser beams are separated by 0.5, there is a blind region
between the beams.

Now that we know the characteristics of the measurements
we formulate our model. We will disregard the phantom mea-
surement effect and assume the error in angle to be independent
of the error in range. Furthermore we assume the error in angle
to be Gaussian. Theth measurement is then modeled as

(11)

where is the true th measurement, mm,
and .

B. Validation Gates

In target tracking literature, the problem of data association
has always been in focus. Using validation gates is a common
way to handle the problem. A validation gate defines a region
around some predicted value in which a measurement will be
accepted as associated to the corresponding feature. We first try
to filter out data points that are likely to be associated with the
walls and then we extract parametric descriptions of these walls
in the form of lines. Due to clutter, the walls might be very hard
to find without prefiltering. The location of the gates will be
functions of and . The size of the gates will depend on the
quality of the sensor data, the method used to extract line param-
eters, the uncertainty in the environmental model, quantization
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Fig. 9. Validation gate where the error in the predication of the wall and the
size of the validation gate were scaled for illustration purposes.

step size, and . The gates should open up, i.e., let more data
through, when the uncertainty in the pose grows and vice versa.
If the sensor data is very noisy, the gates have to be more open
than if the sensor data is very “clean."

Let the validation region be described by the sixtuple
, , , , , . Here is the predicted distance to the wall

and is the predicted angle of normal to the line. These two
entities define the pose of the gate., the smallest width of the
gate, and , the opening angle, define the size of the gate.and

constitutes thevisibility constraint. The visibility constraint
amounts to not trying to detect a wall that is not in the field of
view of the sensor (compare to Fig. 2). Fig. 9 shows a more
detailed illustration of the parameters that define the location
and size of the validation gates. Uncertainty in orientation will
increase whereas uncertainty in position will demand higher
.
Fig. 2 shows an example of how effective the validation gates

are. The darker spots corresponds to scan points that have been
associated with a map line, whereas the lighter once are classi-
fied as outliers. As can be seen, we do not need to have a clear
view of the walls, the only requirement is that we see points of
a wall to make a total length of . In Fig. 2, the right and the
lower wall was used for update, but not the upper one as enough
of it was not seen.

C. Range Weighted Hough Transform (RWHT)

In order to track the walls reliably, we need to be able to ex-
tract them despite a large amount of clutter in the room. Just
like Crowley et al. [5] and Wernerssonet al. [16], we use the
Hough transform. To be specific, we use the modified version
introduced by Wernerssonet al. [16] called the RWHT. In our
algorithm, the RWHT is part of the filtering process that aims
at providing a least squares-based line fitting algorithm with as
clean range data as possible. To reduce computations, a local
version of the RWHT is used with a limited Hough space, cen-
tered around the expected valuesand . That way, we do not
have to perform all the calculations for lines that are not of in-
terest to us.

The main purpose of this first filtering step is to handle situ-
ations where and are only very rough estimates of the line
parameters. That is, when the wall does not fall in the middle of
the gate. Standard least squares algorithms are sensitive to out-
liers which calls for a narrow gate, whereas the RWHT allows
the validation gates to be more open as it has proven to be very
robust with respect to outliers.

D. Least Square Line Fitting Algorithm

In [17], a least squares algorithm is described for fitting range
data to a line by minimizing the sum of squared perpendicular
errors between the data points and the line. The distancefrom
the point to the line is given by

(12)

and the best fit is thus given by

(13)

The solution is (see [17])

(14)

(15)

(16)

(17)

Using a first-order approximation and assuming independence
between and for , the covariance of the line parame-
ters is given by

(18)

where and . The price that we
pay for modeling the uncertainty of the individual measurement
points in polar coordinates (as it should) is a higher computa-
tional complexity.

If we simplify matters by considering each data point to have
the same Cartesian uncertainty, the uncertainty in the line pa-
rameters can be calculated much more efficiently according to
(Dericheet al. [18])

(19)

(20)

where
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We will consider both these methods and compare the per-
formance they provide. Clearly, the first one captures the true
uncertainty of the line better by using a polar description of the
measurement errors. The second, on the other hand, is very at-
tractive as it has much lower computational complexity. When
modeling the distribution for the measurement error in Carte-
sian coordinates, we assume independence betweenand
( ) and let .

VII. EXPERIMENTAL RESULTS

The pose tracking algorithm described in this paper has
been extensively tested as it is part of the localization system
of an ongoing service robot project. In this section, we will
present the results of some experiments that aimed at showing
the performance of the localization system. The maps used in
the experiments have all been made by hand, either acquired
by a tape measure or from a floor plan. The first experiment
(Section VII-A) will show that because of the simplicity of the
rectangular model, the algorithm has no problem in handling
cluttered areas. In the second experiment (Section VII-B), a
90-min-long run where the robot moves throughout most of
the space of the lower floor of the building will be presented.
In Section VII-C, we compare the performance that the two
different least squares algorithms from Section VI-D provide.
In the above experiments, an update rate of 2 Hz is used.
Section VII-D presents results that show how performance is
affected by lowering the update rate. In all experiments, the
pose tracking algorithm is run along with the rest of the system
that provides the capability to go from any point to any other
point in the map avoiding obstacles. No active control of the
direction that the sensor is facing is done. Also important to
mention is that the experiments were not performed during the
night, i.e., there were people walking around and doors opening
and closing while performing the experiments.

A. Experiment 1

The first experiment was conducted in the so-called living
room which is approximately 8.6 m 5 m. Two pictures, taken
from different view points, are shown in Fig. 10. As can be seen
from the pictures, the living room is heavily cluttered with fur-
niture, other robots, and people.

The robot is given a chain of via points to visit, but is not
forced to reach every point exactly, only to come within 100 mm
of them. At the end position though, the requirements are harder
and the robot is ordered to stop within 5 mm of the start/end
point to be able to tell whether or not the estimated pose is
still good. Seven laps in the chain is driven, which takes close
to 20 min for the robot. The sum of the distances between the
points is 180 m in total, giving an average speed of slightly over
0.15 m/s. The platform drifts about 30during the run. The pose
tracker however keeps an accurate estimate of the pose along the
whole path. Given the limited accuracy in a handmade ground
truth measurement the end point error of20 mm might be a
result of an imperfect map.

Fig. 10. View of the south-east and north-west corners of the living room.

Fig. 11. The track followed by the robot, two loops around the lower floor of
the CVAP building. The upper floor is showed in the middle.

B. Experiment 2

In the second experiment, the robustness to different envi-
ronments and long periods of execution are evaluated. Fig. 11
shows the path followed by the robot. The total distance traveled
is 743 m, average speed is 0.14 m/s and total time is 90 min. A
considerable amount of time is spent on passing between rooms
as the robot must slow down to do so. This is the most crit-
ical part of the localization, as the transformation between two
rooms in the map is less accurate than the individual rooms and
since the risk for slippage is quite high when driving over the
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Fig. 12. The corridor outside the living room and typical office in the CVAP
building.

threshold between two rooms. To account for this increase in
uncertainty, noise is injected into the system by increasing,
when the robot passes through a door. Along the track, different
types of environments are encountered. Starting from the living
room, the robot moves through the corridor to the nearby of-
fices, which the robot moves into. These rooms are so small
that the allowable movements of the robot are very limited (see
Fig. 12). The offices are divided by cubicle dividers into two
parts, leaving very limited sight of two of the walls. No problems
have been found in these rooms during any of the runs though.
The corridor at the ground floor of the laboratory is approxi-
mately 55 m long and the width is about 2.3 m (see Fig. 12).
It is obvious that the problem in the corridor is going to be to
maintain a good estimate of the position along the direction of
the corridor. With all doors closed, the only sources of infor-
mation about the position along the corridor are the short end
walls. When moving far away ( 15–20 m) from these short
walls, they can no longer be used reliably, as too few points are
accumulated. The detection of the short walls are made even
more difficult if there is clutter in front of them. Because lines
from neighboring rooms are used as well, a good estimate of
the position along the corridor can still be maintained if some
of the doors are open, providing a view of the walls inside. The
standard deviation in the position estimate reached a maximum
value of about 250 mm in the corridors.

Tracking is maintained for the duration of the run, the limiting
factor in this experiment being the battery capacity and not the
tracking algorithm.

C. Experiment 3

When comparing the performance of the pose tracking
using the two different methods for calculating the least
squares estimate of the lines, no detectable difference is found.
Both methods have been run on the same data sets. Each

full update cycle (all lines) with the polar uncertainty model
takes approximately 17 ms when run on a 400-MHz Pentium
II. The corresponding number for the Cartesian uncertainty
model is 4 ms. Given that the method based on a Cartesian
assumption on the measurement points is less computationally
intensive and that we ultimately want an algorithm that has low
complexity, we see no reason not to use the simpler model for
the uncertainty of the line parameters.

D. Experiment 4

In the last experiment, we tested how fast the update routine
must be run to keep the tracking working. Simply put, the ques-
tion does not have an answer if the environmental model is not
specified. What is all comes down to is being able to solve the
data association problem. In an environment with many large
line-like structures that are parallel and close, the uncertainty
must be kept small to distinguish between them. However, in
most office environments, there are four dominating walls in
each room. In such a case, the uncertainty can be allowed to
grow larger.

Using the data from the 90-min run presented in Sec-
tion VII-B, we tested running the algorithm at lower update
rates with the conclusion that even with an update rate of as
low as 0.05 Hz the robot tracks the pose. The uncertainty now
becomes larger, but not large enough to cause erroneous data
associations. Somewhere around 0.04 Hz, it breaks down for
this data set, when passing from the living room out into the
corridor. 0.04 Hz means one update every 25 s, during which
the robot can have moved a significant distance. Updating at
this rate does not reduce the uncertainty in the pose enough to
maintain tracking.

E. Additional Comments

Besides the experiments described above, it is also important
to mention that the algorithm has been tested successfully on
four different platforms all having the laser scanner at different
heights: Nomad200 (93 cm), Nomad SuperScout (52 cm), No-
madics XR4000 (49 cm), and a Pioneer2 (30 cm). Tests have
also been made in environments different to the ones used above
with many people walking around the robot.

The algorithm needs approximately 4 ms for each iteration
(line extraction accounting for almost everything) on a PII 400
MHz. We have performed a comparison with a modified ver-
sion [19] of what Foxet al. [8] call the Monte Carlo localiza-
tion (MCL) method. Here a set of samples is used to approxi-
mate the probability density function (pdf) instead of the single
Gaussian used in a Kalman filter. The complexity of the algo-
rithm is linear in the number of samples in the set. To achieve
similar tracking performance with a fixed sample set size, we
need about 500 samples. The update of the sample set takes
24 ms, not including extraction of lines. Extracting lines is more
time consuming when the approximate positions of the lines are
unknown. The computational power needed is thus almost an
order of magnitude higher than for the algorithm presented in
this paper. The accuracy is not at all as good, the estimation
error being in the order of 500 mm at times and far from being
as accurate when the robot is moving slowly and has full-rank
measurements (two nonparallel walls). Accuracy is not always
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that important and the main advantage with the MCL method is
that the sample set can represent multimodal pdfs. Therefore, it
can handle situations where the robot due to one reason or the
other becomes very uncertain of its position and data association
is a problem. In fact, it is capable of handling the case of global
uncertainty. The larger the uncertainty, the larger the sample set
size and with it the computational demands. Using an adaptive
sample set size allows for a smooth transition between global
localization and pose tracking, which cannot be achieved with
a single Gaussian. Multiple Gaussian can do it though [20].

VIII. D ISCUSSION ANDCONCLUSIONS

In this paper, we have presented a low complexity, highly
robust and accurate pose tracking algorithm based on a mini-
malistic environmental model and a realistic model of the SICK
laser scanner. The minimalistic environmental model provides
robustness as only the large scale structures, such as the four
dominating walls of a room, are captured. Such features are very
likely to be robust over time and are relatively easy to extract due
to their size, paving the way for low computational complexity.
The low complexity of the algorithm is particularly important
in an integrated system with limited computational resources.

Experiments show that the algorithm can handle a high den-
sity of clutter and is able to track the position for long periods
of time. The limiting factor being the capacity of the batteries
and not the algorithm.

Experiments also show that a simple model for the uncer-
tainty of the line parameters is enough and that the algorithm can
be run at very low frequency (below 0.1 Hz) and still maintains
tracking. It is important to note that updating with low frequency
increases the risk of losing track when something that is not cap-
tured by the odometric model occurs, such as slippage. A topic
for future research is therefore to augment the pose tracker with
means to detect when these events occur. This could be done
by comparing relative motion information from a gyro and the
odometry.
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