
Control of Perception in Dynamic VisionHenrik I. Christensen, Claus S. Andersen & Erik GranumLaboratory of Image Analysis, Institute of Electronic Systems,Aalborg University, Fr. Bajers Vej 7, Bldg D1,DK-9220 Aalborg �, DenmarkIndex terms: Computer Vision, Robotics, Arti�cialIntelligence. ABSTRACTIn order to achieve continuous operation and thusfacilitate use of vision in a dynamic scenario it is nec-essary to introduce a purpose for the visual processingin order to provide information that may control thevisual processing and thus limit the amount of re-sources needed to obtain the required results. A pro-posed architecture for vision systems is presented to-gether with an architecture for visual modules. Thisarchitecture enables both goal and data driven pro-cessing with a potentially changing balance betweenthe two modes. To illustrate the potential of the pro-posed architecture an example system for recovery ofscene depth is presented together with experimentalresults which demonstrates a scalable performance.1. INTRODUCTIONIn order to use vision for monitoring of the real worldit is necessary for the sensor to be able to operatecontinuously and thus in real time. Real-time is heretaken to imply response within a �xed prede�nedtime interval. Real time may thus be processing at aspeed which is below video rate, and it will typicallybe de�ned in consequence of the temporal character-istics of phenomena to be monitored.In order to direct provessing and achieve continuousoperation it has been suggested1;2;4 that processingshould be goal directed and the problem of visionshould not be studied in isolation but rather in thecontext of a user (which has goals). Even with goalsavailable most of the algorithms and techniques avail-able today does not operate with an upper boundedtime complexity unless the input to the system is con-strained somehow. Active control of the resources, inreaction to goals, in order to ensure continuous oper-

ation is often referred to as control of perception.In control of perception several kinds of resources maybe controlled. I.e.:� The sensor system� Where and What to process? (i.e. use of regionsof interest)� Storage resourcesIn particular in model based processing where theitems in the image/scene are compared to a numberof prede�ned models the search for potential matchesis typically NP-complete and to ensure completionwithin a �xed time interval one must limit the sizeof such models to a minimum. I.e., anything not di-rectly related to the task at hand (a perceptual goal)should be thrown away, or at least not included inthe search. When a system operates continuouslythe potential amount of information which may beextracted from each of the images is enormous and itis thus necessary to have facilities for reduction of thisinformation and strategies for 'intelligent' forgettingmust be developed.In order to facilitate processing with an upperbounded time complexity it is also possible to selectthe data which will be processed, i.e., one may se-lect a region of interest for processing. I.e., basedon contextual knowledge and present goals one maypredict where features may be expected or one maydetermine an optimal viewing angle for analysis of aparticular object. The selection of regions of inter-ests provides a convenient mechanism for focusing ofattention.The problem of vision is highly complex and the de-sire to achieve continuous operation to facilitate prac-tical use of computer vision in a variety of domainshas a long history. It has now been recognized formore that a decade that control is needed in orderto enable real world use of computer vision in a large
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range of domains2. There has recently been an in-creasing interest in control and system integration asthe research is moving from studies of individual tech-niques towards construction of system. Aloimonos1and Ballard4 have recently proposed a task driven ap-proach to control where only the most critical featuresfor a given task are extracted and used for satisfactionof goals. The proposed approaches are non-modularand to a certain extend an opportunistic approachto control. Crowley et al.8 have proposed a longterm plan for reconsideration of the vision problemin the context of continuous operation and goal di-rected processing. Preliminary studies have resultedin a suggested system architecture5 and a centralizedcontroller for decomposition of goal requests from auser6. A fundamental hypothesis in much of recentresearch is active use of the sensor system. I.e., ithas been conjectured that many vision problems maybe simpli�ed substantially if they are studied in thecontext of an active sensor system where both intrin-sic and extrinsic parameters may be changed. Pre-liminary results such as those reported by Clark &Ferrier7 and Rimey & Brown9 are very promising andindicative that a study of control of perception mustinclude considerations related to the sensor system.In this paper a general framework for interaction be-tween visual modules is proposed is section 2. Theproposed architecture for system control contains fa-cilities for several di�erent strategies to control as it isconsidered essential that several competing approachmay co-exist in a single system. In section 3 a generalarchitecture for continuously operating visual mod-ules is developed and it is described how temporalcontext may be utilized for local interaction betweenmodules to ensure maintenance of the available rep-resentations. In section 4 it is described how the sys-tem and module architectures proposed may be usedin a system for robust extraction of sparse depth cues.For each of the system modules the implications of thesystem architecture and control it is described. In sec-tion 5 the possible use of a controllable sensor systemis briey outlined. The described system has beenimplemented in experimental software and tested onboth synthetic and natural images. Experimental re-sults which demonstrates a scalable performance andtechniques for detection of unexpected scene eventsare reported in section 6. Finally section 8 providesa summary and an outline of some issues for futureresearch.2. A SYSTEM APPROACH TO CONTROLIn a goal directed approach to vision several di�erent

strategies to control may be used. Control may bedivided into two main categories5:� Hierarchical� HeterarchicalIn a hierarchical approach the modules are ranked ac-cording to abstraction or responsibility and the owof information (data and control) is top-down and/orbottom-up . In a typical scenario a speci�ed goal pro-vides a focus for the upper most module (i.e., inter-pretation) which in turn speci�es what informationthe module must acquire from \lower" level modules.In consequence of \local" goal speci�cations a mod-ule provides (to the extend possible) the desired dataor a speci�cation that goal satisfaction is impossible(possibly with a con�dence factor associated with theresponse). A typical architecture for hierarchical con-trol is shown in �gure 1.
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Figure 1: System architecture for hierarchical controlIt is important to note that data provided by a mod-ule may arise due to two phenomena:1. veri�cation/rejection of goal requests2. unexpected / unanticipated data (scene events)The data in category one has already been out-lined, but for control it is equally important to con-sider those in category two. Scene/image events pro-vides important cues for bootstrapping and modelinvocation, and in a continuously operating sys-tem it provides also cues for change of processingmodes; i.e., temporal events may be related to ini-tiation/termination of motion (at a given scale) ora change in motion pattern (constant motion $ ac-celerating, collision, : : : ). Such events may require achange of higher level goals; i.e., from a \description"
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of an item it may be necessary to direct processingtowards \tracking".In the heterarchical control strategy there is no strictordering of modules. In such a system the use ofboth data and control information is opportunistic.An example of systems which exploits such a strat-egy is the well known blackboard systems used in AI.In this strategy one of two approaches to control ofindividual modules may be adopted.1. explicit requests to modules2. posting of requestsIn the explicit approach the modules have well de�nedstrategies which speci�es the primitives/data neededfor satisfaction of individual goal requests and a spec-i�cation of the modules to activate to obtain suchdata. The alternative approach uses a blackboardor posting mechanism for announcement of goal/sub-goal requests.Each module or group of modules has access to theserequests and they have internal facilities for evalu-ation of their ability to satisfy such requests. Theopportunism, mentioned earlier, is thus related tothe self activation of modules in consequence of an-nounced requests. In such a strategy a module mightrespond to a request with a new request. I.e., a track-ing module might provide information about the fo-cus of expansion given that a sequence of images ortokens is provided by another module.The activation of modules can also be data driven sothat modules self activate when/if the needed data forprocessing are available. Such an activation strategyfacilitates event driven or bottom-up driven process-ing. A typical architecture for heterarchical controlis shown in �gure 2.Goal requests may have many di�erent formulations,but they may typically be seen as expectations. I.e.,what is the point in a request like \where is the box?"unless there is an expectation that a box can be foundin the scene.In a temporal context (given continuous operation)where the scale of analysis is su�cient most of the\features" in the image/scene will be well behavedand obey some kind of path coherence which allowprediction of their location/parameters in subsequentimages. Such predictions may be thought of as ex-pectations which speci�es what and where to `look'(process). In robust estimation of features or derivedparameters this mechanism facilitates accumulationof evidence from multiple images or views. In eventdetection the expectations provides a context for ig-norance. I.e., what features or behaviors are the sys-tem/module already aware of.

The use of expectation is particularly suited in a hi-erarchical control strategy where a single sequentialset of modules cooperate to maintain a description ofthe scene to facilitate goal satisfaction and continu-ous operation. The local interaction between mod-ules provides an e�cient tool for small scale changesin parameters and regions of interest etc.For requests related to items not previously seen thedistribution and nature of the items determines whatan optimal strategy to control is.Generic objects (i.e. object classes) can typically bedescribed in a feature hierarchy where the object isdecomposed into parts. I.e. a cup is composed ofa body (cylinder with container functionality) and ahandle (generalized cylinder with grabable function-ality), each of these items may be broken down intoother primitives etc. Given such a break down eachmodule may have strategies for transformation of in-put parts (data made available to the module) intooutput parts/features (data provided to other mod-ules). There is little point in centralizing such knowl-edge and given distributed strategies the hierarchicalapproach to control seems a good choice. For goals re-lated to speci�c objects (or instances) where uniquefeatures can characterize the object (or a temporalphenomena) it is more e�cient to exploit a heterar-chical approach. I.e., if it is known that a particu-lar object is the only yellow item which can occurin the scene, a \simple" color segmentation modulemay be invoked for goal satisfaction. Control shouldhere perform a direct invocation of the color segmen-tation module (with a speci�cation of any contextualknowledge which may guide the processing) as a top-down invocation may be slow and inappropriate. Forsystem level control both kinds of control are thus de-sirable and a system should preferably have facilitiesfor use of both kinds of control.In the following section a standard module architec-ture for modules which facilitates both strategies willbe presented.3. CONTROL OF VISUAL MODULESIn continuous processing of input data, where somekind of continuity for the motion in a dynamic scenemay be assumed, it is convenient to exploit the tem-poral context for reduction of ambiguity. I.e., fromtracking it is well known that maintenance of labels/ matching may be achieved through adaptation ofa hypothesize { match { update cycle of processing.In such an approach the temporal context is used forprediction of the appearance of features in the sub-sequent sample (image), and the matching is then
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Figure 2: System architecture for heterarchical controlperformed between the predicted and the image de-rived features. The module architecture is shown in�gure 3. This approach has proven to be highly ro-bust and to simplify matching substantially. In orderto make such a module operate in a goal directed con-text it is necessary to extend the module architectureso that processing may be guided.
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dataFigure 3: An architecture for predict{match{updateThe use of top-down expectations may be incorpo-rated through introduction of an additional model(expectation model) in the module. The predictioncan then take both the expectation and data derivedmodels into account when the features in the next im-age are estimated. I.e., the prediction will estimatethe occurrence of features which has been seen earlierand features which are expected by other modules.Through change of the weight associated with theprimitives in each of the two models it is possible to

change the balance between top-down (goal-directed)and bottom-up (data/event-driven) processing.The prediction of new primitives may be used motonly in matching but the primitives can also be con-verted into the vocabulary of module input primitivesor \lower" level primitives. Such converted primitivesmay be used for control of other modules as they pro-vide an expectation which speci�es primitives thatshould be present in order for this module to gen-erate needed output primitives. Through introduc-tion of the conversion function (inverse transform) acontrol loop between neighboring modules has beenclosed and a convenient mechanism for hierarchicalcontrol has been provided. The modi�ed module ar-chitecture is shown in �gure 4.
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with a local controller which may perform one of fourdi�erent operations.1. Determine if a given goal request received froma common system control channel (i.e., a black-board) is relevant to the module and if so intro-duce primitives which enables goal veri�cation /rejection.2. Determine if the data available at the input maybe fused (transformed) into a sensible set of fea-tures which can be forwarded to \higher" levelmodules.3. Control the balance between goal-directed anddata driven processing based on information re-lated to quality of available primitives, the set ofpresent goals, and the available resources.4. Determine local status information and commu-nicate changes to other modules or a centralizedcontroller. Based on the ratio#new primitives seen#items in local model (1)and #primitives lost#items in local model (2)it may be determined if the module is operatingin a stationary/stable mode or an event detectionmode (potentially for each region of interest). Ifa large number of new primitives are introducedand other set of primitives are lost between eachimage there is excessive noise in the data or thetracking processing is failing due to non-optimalparameter settings. If a large number of prim-itives are being introduced it suggests an eventwhich has lead to introduction of new structurewithin the �eld of view, while loss of primitivessuggests removal of structure.The total module architecture, which includes thestructure shown in �gure 4 and a local controller, hasthus facilities for both hierarchical and heterarchicalcontrol. Given an \intelligent" local controller it ispossible to dynamically shift the balance between thetwo modes of control.In the next section an example of the use of such amodule architecture is outlined.4. AN EXAMPLE SYSTEMTo demonstrate some of the principles described inthe previous sections a vision system is presently un-der construction at Laboratory of Image Analysis,

Aalborg University. For recovery of sparse depth cuesan iterative binocular feature based stereo approachis used. The images from each of the cameras aresubjected to the following processing steps:a) Image acquisitionb) Edge detectionc) Line extractiond) 2{D trackinge) 3{D recovery and tracking.The 2-D lines which are maintained by the trackingprocess are then fused in a matching process whichprovides a set of 3-D lines (or rather a disparity de-scription along 2-D lines). The 3-D lines are subse-quently tracked in 3-D. The architecture for the re-covery is shown in �gure 5.
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Image acquisitionFigure 5: Architecture for recovery of sparse depthcuesEach of the modules are interconnected according toa hierarchical strategy. The implications in terms ofcontrol are outlined below for each of the modules.3-D Recovery and Tracking The 3D recovery isbased on a \simple" matching which utilizesminimum distance between measured primitives.
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The matching allows one $ many matching tooccur through integration of multiple observa-tion by averaging. The extracted 3-D lines aresubsequently tracked using Kalman �ltering.The 3-D tracking enables prediction of line po-sition and orientation in 3-D. Given knowledgeabout intrinsic camera parameters (obtainedthrough through calibration) it is possible tobackproject the lines into 2-D (in a local coordi-nate system for each of the cameras). The backprojected lines may subsequently guide the 2-Dtracking process.As the tracking processes in both 2-D and 3-Dare based on Kalman updating each line has anassociated covariance matrix for the estimatedparameters (position, orientation, and velocity).The covariance is large for new or changing pa-rameters and small for stationary parameters.This corresponds directly to the size of the searchregions which should be used for matching withlines in new images. The covariance informationis thus made available as part of the back pro-jection.2-D Tracking In the 2-D tracking both projectedand data derived lines are used in the predic-tion and matching. There is presently no bal-ancing between the two kinds of primitives andthey are associated equal weight. The 3-D lineshave associated id's for the 2-D lines which werematched as part of the 3-D recovery. These id'sare used for simple matching of projected anddata derived lines, and such lines have a highercon�dence than those with no 3-D counterpart.I.e., the lines with support in both models haveboth temporal and spatial contextual supportand they are thus considered reliable.The predicted 2-D lines are also back-projectedto lower level modules as search regions for theanalysis of single images. These search regionshave associated size information which is directlyproportional to the covariance related to positionof line mid-points.2D Line Extraction The extraction of straight linesegments may be based on a variety of di�erenttechniques. We have here chosen to use a Houghbased technique which has been optimized fordetection of �nite length line segments.The Hough detection algorithm performs a scanthrough the image to construct values in theaccumulator space which subsequently is seg-mented to provide a linked list of lines. Theactual scanning of the image is by far the step

which uses the least resources and it has conse-quently not been optimized for use of search re-gions. Anything received from the edge detectionmodule is simply processed. The Hough mod-ule does, however, relay the expectation modeldownwards to lower level modules.Edge Detection In order to optimize line extrac-tion it is desirable to have an edge detection pro-cess which calculates local gradients and orien-tation. This is here achieved through use of a7� 7 Prewitt operator, where the gradients ini-tially are stored in a polar representation (magni-tude and orientation). The edge image is subse-quently processed by a hysteresis based segmen-tation and thinning operator which provides edgesegments of width equal to one. The thinned im-age is now converted into a single image wherepixel with a value di�erent from zero are codedwith edge orientation for use in the Hough algo-rithm.In this module the input image is only processedwithin the speci�ed search regions (i.e., process-ing is driven by top-down expectations and itdoes not have facilities for detection of events, afacility which will be added later). All the pix-els outside search regions are assigned a valueof zero. In order to facilitate simple use of thesearch regions the expectation model form thebasis for construction of a mask image wherethe search regions are projected onto and sub-sequently �lled. When the edge detection andthinning is performed the mask image is checkedand only at the positions where the mask imagehas a non-zero value is the operator applied. Thewidth of the search regions is equal to s? = k��?where �? is the variance perpendicular to theline, while k is a control parameter that enablesscaling of search regions, a similar formula is usedfor calculation of the length of the search region(i.e., sk = k � �k).The adaptation of control information is expected tofacilitate speed-up of processing and demonstration ofa scalable performance for most of the modules. Theactual results obtained with the system is describedin section 6.5. USE OF SENSOR SYSTEMAt Aalborg University a binocular robot camerahead has been build. The head includes facilities forcontrol of focus, zoom, aperture, vergence angle, andbaselength (distance between optical centers).
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In stereo matching it is well known that matchingis more di�cult when the baselength is large. In or-der to reduce this problem, the described system usesan iterative method, where the initial baselength issmall (d < 10cm), and once an initial correspon-dence (with a high uncertainty on the depth esti-mates) has been obtained the baselength is gradu-ally increased improving the disparity estimates whilemaintaining (reliable) correspondence. The strategyfor change of baselength is based on the uncertaintyassociated with the extracted 3-D line segments. Thecovariance for all the line segments are averaged andthe resulting average covariance is used for control ofbaselength. Initially the number of 3-D line segmentsdetermines when the control algorithm is activated.I.e., a certain number of lines must be present beforethe improvement algorithm is initiated. The base-length is then increased until a pre-speci�ed value ofthe covariance is achieved.The camera head can also controlled by other mod-ules in the system; i.e., geometric scene modeling, butthat in another issue which is still under investigation.6. EXPERIMENTAL RESULTSThe system presented in section 4 has been tested ona number of synthetic and natural image sequences.For the natural images a polyhedral world is used.Most of the test images has been acquired for a modelof a small town build from wooden blocks. An exam-ple images from one of our towns is shown in �gure 6.The images acquired was processed by the systempresented earlier and an example image which showsthe search regions for the image shown in �gure 6 isillustrated below in �gure 7.In a sequence of experiments we have tried to varythe control parameters (k) associated with the searchregions in order to demonstrate that these parametersallow control of use of resources. The test reportedhere are based on the sequence from which the imagein �gure 6 was taken. In an experiment where nocontrol is imposed the system extracts on the averagen2�D = 40 2-D lines which results in an average ofn3�D = 38 3-D lines.In the experiments the control parameters k wasvaried from k = 0:25 to k = 1:5. The results obtainedare shown below in table 1.

Figure 6: Example of natural image of one of themodel towns usedSetup n3�D relativeexec. timeNo control 38 1.00k=0.25 38 0.25k=0.50 33 0.35k=0.75 33 0.43k=1.00 33 0.49k=1.50 33 0.56Table 1: Results obtained when the control param-eters are changed.The reported timing results does not include thetime needed for construction of the mask image inedge extraction as this time is highly dependent onthe e�ciency of the used �lling algorithm. It should,however, be noted that our �lling algorithm is fairlyslow (on the order of 2 sec. for a 512 � 512 image)and we need thus a small control parameter to obtaingood results, but our �lling algorithm has not beenoptimized in any way. A more elaborate study of�lling algorithms may potentially give much betterresults.From the results shown in tabel 1 it is evident thatthe execution time may be controlled through vari-ation of the control parameters k. It is also evidentthat the results obtained with feedback from othermodules are more robust.7. SUMMARY
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Figure 7: Lines and corresponding search regions for processing of the image shown in �gure 6.It has been argued that vision processing must begoal directed in order to enable continuous operation,and an architecture which facilitates both hierarchicaland heterarchical propagation of control informationhas been presented. A module architecture whichis suited for incorporation into this system structurewas also presented. The proposed architectures wasdemonstrated on an example system for recovery ofscene depth, and experimental results demonstratedthat the system has a scaleable performance.Future research will be aimed at introduction ofsimilar structures at other levels in a vision systemin order to demonstrate scaleable performance for afully integrated vision system.8. ACKNOWLEDGMENTSThe work presented in this manuscript has bene�t-ted substantially from discussions with our partnersin ESPRIT Basic Research Action BR3038 \Vision asProcess" and our colleagues at Laboratory of ImageAnalysis, Aalborg University in particular the mem-bers of the VINE group.For the work reported here Henrik I Christensenwas funded by ESPRIT BR3038 \Vision as Process"while Claus S. Andersen was funded by the DanishTechnical Research Council under the MOBS frame-work programme and the Faculty of Science andTechnology at Aalborg University. This funding isgratefully acknowledged.9. REFERENCES
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