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Abstract

We address scaling of the “dynamic systems” ap-
proach for robot planning to multi-agent cooperation,
To accommodate this extension it is necessary to care-
fully consider how individual behaviors contribute to
the vector field. To avoid spurious minima and re-
lated problems a competition dynamics is introduced
and its stability is analyzed. A system of two cooper-
ating agents is designed, and examples are presented
to illustrate the utility of this approach.

1 Introduction

Over the past twenty or so years there has been a
great deal of research in the field of robot path plan-
ning and control. Much of this work has focused on
finding the best or most appropriate space in which
to represent the robot actions during the navigation
task. In spite of this effort, however, the issue of what
is the best space in which to represent robot behavior
remains an open question.

Geometric representations (e.g. [1, 2]) model the
geometry of the agent and the external environment.
The difficulty with the geometric approach, however,
is that it is too static. Configuration space representa-
tions [3, 4, 2] include geometry and kinematics. The
difficulty here is that these spaces are complex and
only simple configurations are computationally feasi-
ble. Potential field representations [5, 6] build upon
configuration space representations, defining a state
space over which a potential field can be defined.

The above approaches rely upon global represen-
tations of the world in which the robot operates.
Another possibility is to define a representation in
which the dimensions correspond to robot behavior
(e.g. [7, 8]). Using such a representation Schoner and
colleagues have developed a “dynamical systems” ap-
proach for robot path planning and control. In this
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approach a set of behavioral variables defines a state
space In which a dynamics of robot behavior is de-
scribed [9, 10].

This approach has several advantages. The level of
modeling is at the level of behaviors. The dimensions
of the state space correspond to behavioral variables,
such as heading direction and velocity. The environ-
ment is also modeled at a behavioral level. The en-
vironment provides task constraints, that provide the
system with behavioral information. Task constraints
are modeled as component forces that define attrac-
tors and repellors of a dynamical system. The con-
tributions are combined into a single vector field by
additive composition. Planning and control governed
by a dynamical system that generates a time course of
the behavioral variables. The dynamics are specified
as a vector field that governs system behavior.

In this paper, we investigate the scalability of the
dynamic approach. In particular, we investigate its
applicability to the control of a pair of cooperat-
ing robots. The problem we will encounter is that
non-independent contributions to the vector field can
create spurious attractors and cause related prob-
lems. We propose a solution that involves competi-
tion among task constraints. We deal with multiple
constraints by dynamically computing weighting coef-
ficients that determine the relative contribution of dif-
ferent task constraints at any given time. Competition
among behavioral constraints leads to the generation
of behavioral sequences.

2 Dynamic Planning and Control

The behavior of an agent is modeled as a time
course of behavioral variables generated by a dynam-
ics that incorporates both planning and control knowl-
edge. We focus on the dynamics of heading direction,
assuming that velocity can be appropriately controlled
(see, for example, [11]). For our one-dimensional sys-
tem, the dynamics take the following form.

¢ = f(9). (0
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Figure 1: Task constraints and their contributions to
the vector field. A target (attractor, Fyar); an obstacle

(repellor, F,;5); their composition, ¢ = Fiar + Fops.

Task constraints define contributions to the vector
field, f(#), by modeling desired behaviors (e.g. head-

ing toward the target) as attractors,

Fior = —a* Sil’l((f) - "/’tar), (2)

and to-be-avoided behaviors (e.g. heading toward an
obstacle) as repellors (see Figure 1).

Fobs,‘ = Robs,- X Wobsi X Dobs.' (3)

The repellor corresponding to an individual obsta-
cle is the product of three functions. R, sets up a
generic repellor in the direction of the obstacle, Wy,
limits the angular range, and Doy, scales the strength
according to the obstacle’s distance from the agent.
Thus, the contribution of each obstacle is range lim-
ited. Details regarding the specific functional forms
can be found in [9]. Multiple obstacles are handled by
summing the contributions of individual obstacles.

n
Fops = Z FObSi (4)
1=1

Finally, the contributions of individual task con-
straints are combined additively into a single vector
field as illustrated in Figure 1.

é = Fiar + Fops + noise (5)

Because certain constraints are modeled as repellors,
the planning dynamics is augmented by a stochas-
tic term that guarantees escape from unstable fixed
points.

2.1 Scaling the Dynamic Systems Ap-
proach

In a simple navigation system, with two behavioral
constraints, target and obstacles, the above approach
works well [9]. But can the same approach be used
to describe more complex tasks? Consider a system
in which we have two agents, and both agents must
obey the same constraints as in the above system, i.e.

they must perform a navigation task. Further, we add
the constraint that they must stay near one another as
they make their way toward the target location. We
will call this additional constraint other. Thus, each
agent must respect three behavioral constraints. Sim-
ilarly to target seeking, we model this new constraint
as a global attractor.

Fotp = —a sin(qS - ¢oth) (6)

Then the contribution of other is additively combined
to the composite vector field (Figure 2):

(i) = Fiar + Fops + Forn -+ noise (7)

In addition, we assume that if the agents come too
close to one another, they are to avoid collision in the
same way as they would avoid stationary obstacles.

2.2 Spurious Attractors and Constraint
Averaging

Unless care is taken, as the number of constraints
grows, non-independent contributions to the vector
field can combine in such a way that they give rise to
attractors corresponding to undesired behaviors, such
as running into obstacles or getting stuck in an area
and never reaching a target location. Figure 2 shows a
spurious attractor. Two obstacles are situated in front
of the agent in such a way that there is almost, but
not quite enough space for the agent to pass between
them. If only the contribution of ebstacles to the vec-
tor field is considered, a repellor with a shallow slope
is created at thelr average location. If the target is
placed behind the obstacles, so that its attractor con-
tribution to the vector field collides with this repellor,
an attractor is created between the two obstacles. The
agent will get stuck at this location.
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Figure 2: A spurious attractor.

A related problem is constraint averaging. This
crops up in the composition of target and other, as
depicted in Figure 3, where two agents are headed to-
ward the target, yet one is considerably ahead of the
other. We see the situation from the point of view
of Agent 2 (middle). The target and the other agent
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Figure 3: Constraint averaging.

lie in opposite directions, so in composition these two
contributions cancel. The problem here is that non-
independent contributions to the vector field combine
in such a way that a single attractor lies in their av-
erage direction. In some cases this yields appropriate
behavior, but in most cases (e.g. Figure 3) is does not.

3 Competition Among Task Con-
straints

To deal with such situations, we modify the
strength of each contribution with a weight that 1s
assigned to each type of task constraint.

d; = !wtarlFtar + lwobleobs + Iwotthoth + noise (8)

Weights are assigned through a competitive dynamics
that operates at a faster time scale than the behav-
ioral dynamics. This determines the strength of each
contribution depending upon the current situation.

w; = owi(l — w?) — Z")’j’iw‘?w'[ (9)
J#

In Equation 9, 2,7 € {tar,obs,oth} index the con-
straints. The parameters to the competition dynam-
ics are the «; and the v;; referred to as competitive
advantage and competitive interaction, respectively.
The competitive advantage of each constraint is de-
termined by its applicability in the current situation,
while competitive interaction summarizes the degree
to which the constraint is consistent or inconsistent
with other active constraints. Given appropriately
chosen functions that tie the competition parameters
to situations in the environment, we show that this
type of competition allows us to scale the dynamic
approach to the design of a system of three task con-
straints. Competition also produces simple and com-
plex sequences of behavior that are generated oppor-
tunistically, in response to specific environmental sit-
uations.

4 Cooperation through Competition

Our development will proceed in three stages. First,
we perform a stability analysis that will tell us how
relative values of the parameters «; and 7;; determine
the weights of the component behaviors. Second, we
identify situations where constraints are incompatible,
leading to the design of functional forms that tie com-
petitive interactions, i.e. the ¥;;, to specific situations.
Finally, we determine which environmental situations
call for the activation of which behaviors. This leads
to the design of functional forms for the competitive
advantage, «;, of the constraints.

4.1 Stability Analysis

A linear stability analysis (e.g. [12]) was per-
formed on the system described by Equation 9 assum-
ing aq,v;: > 0, for the case of three behavioral con-
straints. The analysis reveals the qualitative behavior
of the competitive dynamics, by enumerating the set
of equilibrium points for the three-dimensional sys-
tem and classifying each equilibrium point according
to its stability. Because the stability of each equilib-
rium point changes depending upon the values of the
parameters «; and 7;;, we also computed a set of sta-
bility conditions. The analysis (Table 1) revealed eight
equilibrium points, corresponding to eight unique be-
haviors that can be generated by the agent.

The stability analysis reveals three classes of stable
solutions. Rather than describe each behavior individ-
ually, we describe only each class of stable solutions.
This will make the job of understanding the competi-
tive dynamics easier. It will also illustrate important
features regarding the scalability of this approach.

The first class of solutions corresponds to one con-
straint being activated, and the others deactivated.
Let us refer to the active behavior as behavior i. This
solution is stable so long as v, ; > «;, V j # 4. In other
words, behavior 7 is the sole winner of the competition
whenever it actively inhibits every other behavior.

The second class of solutions corresponds to two
constraints being activated and the third deactivated.
Let i and j be the activated constraints, and & be the
deactivated constraint. Then this solution is stable
whenever o; > 7v;; and a5 > 7; ;. Additionally, it
must be the case that v;r > ar or v > ar. The
latter condition says at least one of the active con-
straints must be inhibiting behavior k. This so-called
“averaging solution” is given by:

e e AR

Qi — Y575,

(10)

If there 1s no competition between constraints, v; ; =
0, Vi, 7, both constraints are activated at full strength.
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Table 1: Fixed points and stability conditions for com-
petitive dynamics.

The resulting behavioral dynamics reduces to that de-
scribed by [9]. If there is some competition, both are
still active, but at reduced levels.

The final class of solutions consists of a “3-
constraint averaging” solution, where all three con-
tributions are active. This point is stable as long as
a; > v;; for all j # 4. While it is possible to write
down a closed form for this solution, the equation is
somewhat messy and uninformative, so it is not in-
cluded here.

This analysis points to some interesting scaling
properties of the competitive dynamics. First, a com-
plex conspiracy of competitive interactions is not re-
quired to activate or deactivate a constraint. The im-
portant implication of this observation is that we can
design the competitive dynamics simply by consider-
ing pairs of behaviors. Second, we can count the num-
ber of unique behaviors that arise in a n-constraint
system. It is simply the number of ways to chose one
active behavior, plus the number of ways to chose two
active behaviors, and so on. In other words, the num-
ber of behaviors generated in such a system is:

(e (50 o

The stability analysis reveals important facts about
the scalability of this approach. In an n-constraint
system, competition provides 2” — 1 unique behaviors.
Designing the system requires at most n? design deci-
sions: n? —n competitive interactions, plus n compet-
itive advantages. Furthermore, the analysis describes
how the relative values of the ¥;; and «; determine
which behavior arises from the competitive dynamics.
We use this information to design functions that tie
competitive interaction and competitive advantage to
situations in the environment.

4.2 Competitive Interaction

In this section, we determine competitive interac-
tion among the constraints. We begin by detecting the
situations in which target is incompatible with obsta-
cles, with the goal of preventing the creation of spuri-
ous attractors. Our strategy is based on the observa-
tion that whenever an attractor and a repellor collide
(e.g. Figure 2), unwanted consequences may result,
because the two contributions are non-independent
and contradictory.

We design “fixed point detectors” that describe the
location and stability of the fixed points for each con-
tribution to the behavioral dynamics. We then use
these functions to define competitive interaction be-
tween the two task constraints. For the target contri-
bution, we use:

Pior = sgn(%) e c1lFtar] (12)
de

This function has two factors. The first calculates the
sign of the slope of the vector field contribution. This
determines whether a fixed point is an attractor (neg-
ative slope) or a repellor (positive slope). The second
finds fixed points, using a function that has a value of
one when the vector field contribution is equal to zero,
and quickly falls to zero as the magnitude of the con-
tribution grows. The parameter ¢; > 0 determines the
rate of fall off around the fixed points. Thus, Pi4, has
a value of one at a repellor, minus one at an attractor,
and values approaching zero elsewhere.

The situation is slightly more complicated for obsta-
cles. Because obstacle contributions are range limited,
i.e. have values near zero outside an obstacle’s range,
Equation 12 will identify these areas as fixed points.
Thus, for obstacles, we sum the range-limiting func-
tions for the obstacles, saturating to insure bounded-
ness, and use the result as a multiplicative factor.

dFobs
d¢

where Woys = Y Wois, (see [9]). As above, this func-
tion has a value of one at a repellor, minus one at an
attractor, and values approaching zero elsewhere.

Next we use Piqr and P, to construct a function
that describes the competitive interaction between ob-
stacles and target:

Poys = tanh(Wops) sgn( ) e~ 1l Fobsl (13)

6-‘02PtarPobs

Yobs tar —

(14)

ec2
This function is strongly peaked at the point of
attractor-repellor collision. The constant co > 0 de-
termines the rate of drop off around the collision.
Next we choose the competitive interaction between
target and obstacles. For the current navigation task,
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it is never appropriate for the agent to turn off the 0b-
stacles constraint. Thus, we choose a small constant
value for viar obs, allowing this constraint to be acti-
vated whenever the agent approaches an obstacle.

Finally, we consider the other constraint. In most
situations the we will want to enforce competition be-
tween the target and other, although there will also
be in some situations in which moving in the average
direction 1s the appropriate behavior. When the tar-
get and the other agent are in opposite directions we
wish to force a decision, but when they lie in the same
direction, both constraints can be satisfied simulta~
neously. We can accomplish this type of competitive
interaction using the following function.

Yoth tar = bl(tanh(“‘bZ Cos(wtar—¢oth)+b3)+1) (15)

Competition is high except for a certain region around
an angular difference of zero. The size of this region
can be adjusted using the constant b3, while the slope
of the boundary is adjusted using b2. b; sets the max-
imum level of competitive interaction.

4.3 Competitive Advantage

In this section, we choose values for the competi-
tive advantages so that, in situations where the two
behaviors compete, we can determine the outcome of
the competition. First, we note that target should be
turned on whenever possible. Using knowledge of the
background level of competition created by Equation
14, we choose a constant value for ;... Whenever ob-
stacles actively competes with target, aiar < Yobs tar;
and target will be deactivated.

Next, we must decide how to set competitive advan-
tage for the obstacle contribution. Intuitively, we ob-
serve that obstacles should have high competitive ad-
vantage when they are nearby and/or when there are
many of them around the agent. The function D, (a
component of Fys,, see [9]) grows exponentially fast
as the agent approaches an obstacle. To count the
number of obstacles around the agent, weighted ex-
ponentially according to distance, we sum the D,
saturating to ensure boundedness. This yields the fol-
lowing function for competitive advantage.

n
Qops — tanh(z DObs.‘) (16)

i=1
Finally we determine the competitive advantage of
other. In terms of competitive advantage, other is
somewhat different from fargei. Because we simply
want the agents to remain “near” one another, we
want to deactivate other when the agents are close

enough. Thus we choose:

eroth

) (17)

toth = tanh(

Here, r,yp, is the distance to the other agent, and the
constant d; determines how close we wish the agents to
be. Thus, the agents will try to maintain a maximum
distance of di between one another. If they get farther
away than di, they will activate the other constraint,
if they get too close they will activate obstacles.

5 Examples

First, we look at the situation depicted in Figure 2,
in which two agents approach a target, with one far in
front of the other. We will look at the competition pa-
rameters for Agent 1 (bottom). In Figure 4A, Agent
2 (top) begins to turn around due to competition be-
tween targel and other. Agent 1 continues directly
ahead. Both target and other are active, because both
lie in the same direction. Figure 4B shows that Agent
2 has come around to meet Agent 1, and Agent 1’s ob-
stacle constraint becomes active. It is close to Agent
2, and its other constraint begins to give way, but all
three constraints are active. In Figure 4C, the agents
are near one another, thus Agent 1’s other constraint is
deactivated. Finally, Figure 4D, shows the two agents
successfully approaching the target. In this example,
the competitive dynamics gives rise to a sequence of
behaviors, implementing cooperative navigation.

Next, we look at a new situation. In Figure H5A,
the two agents are moving together (Agent 1, right
Agent 2, left) as they come upon a wedge-shaped con-
figuration of obstacles, designed to drive them apart.
Initially, both target and obstacle are active. In Figure
5A, they move forward, avoiding obstacles. In Figure
5B, the agents are driven apart. Notice that target and
obstacles are active, while other is not yet active; the
competitive advantage of other is not strong enough
for it to become active and suppress target. As the two
agents round the wedge (Figure 5C), other overcomes
target, and the agents move toward one another. In
Figure 5D the agents resume their course toward the
target. Again, a behavioral sequence is generated.

6 Concluding remarks

The current investigation has three implications for
the dynamic systems approach. First, through com-
petitive dynamics, 1t is possible to design systems com-
posed of multiple behavioral constraints that give rise
to sequences of behavior. Second, competitive interac-
tlon among constraints is able to deal with problems
that are caused by multiple non-independent contri-
butions to the behavioral dynamics. Finally, the com-
petitive dynamics solution scales nicely to the design
of more complex systems. In this paper we used the
example of two cooperating robots, but more complex
systems are possible.
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Figure 4: Cooperative navigation (I). Constraint
weights (solid) and competitive advantages (broken)
are shown in upper left panels for Agent 1 (bot-
tom/right).
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