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Introduction

Last time we spoke about direct use of data point / simple models

What if we want an explicit functional approximation to data?
Approximating a function/data by a class of simpler functions

Two main motivations

@ Decomposition of a complicated function into constituent simpler functions to
simplify further work
@ Recover a function from partial or noisy information

Applications:

@ Signal compression / reconstruction (Fourier would be an example)
@ Data fitting (line, plane, manifold, ...)
© Recovery of a model say CAD recovery - Looq is a good example
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@ Numerical Recipes: Chapter 3.4-3.5
@ Numerical Renaissance: Chapter 5
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Uniform approximation by polynomials

Looking at polynomial again

What is the best uniform approximation?

Given a function f: [a, b] — R and a polynomial p we can measure the error
by the Lo, norm, i.e.,

f—pllo = f(x)
I = pllec = max |f(x) - p(x)|

A good approximation is one where the norm is small

Remember Weierstrass' theorem.
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Polynomial approximation

Lets restrict the degree of the polynomial - n

Lets set 7, be all the polynomials degree at most n

Let uniform distance of f from 7, be the smallest error achievable using
polynomials from 7, denoted by

d(f,7n) = minper, |[f = plloc

How can we make it happen?

H. I. Christensen (UCSD) Math for Robotics Oct 2023

Polynomial approximation - getting help

@ We have a theorem:

e A function f continuous in [a, b] has exactly one best solution from 7,
e The polynomial p € 7, of f across [a, b] iff
o there are n+2 point a < xp < ... < x, +1 < b such that

(—1)'[F(x) = p(xi)] = €llf = pllos
where € = signum(f(x0) — p(xo)]

e By alternating signs at n+2 points the different between f and p is precisely
equal to the L
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Putting theorem to work

@ Can we use the theorem to build a strategy?
@ Lets consider f(x) = e~ on [—1,1]

@ What would be the best 1st order approximation, i.e.,
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Fitting the line

@ So we have three points

@ xo=-1,xg="7and x, =1
@ at which the error is f(x) = p(x)

@ So what is x1?
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Fitting the line

So we have three points
X0 = —1, X1 =7 and Xo = 1

at which the error is f(x) = p(x)

°
°
°
@ So what is x1?
@ we can write p(x) = a+ bx
°

We can compute the error at the three points:

e(x0) = f(x)—plxs) =F(-1)—p(-1) =1—atb
e(x1) ="f(x1)—p(x) = e —a+ bx
e(x2) =f(x)—plx) =f£(1)-—p(1) —e—a—b
e Given e(xg) = e(x2)
l_a+b = e—a—b
2b = e— %
b = 1.1752

The slope is equal to the average change
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Fitting the line (cont)

How do we find a?

The difference (positive / negative) should be symmetric

The error function should at an extrema at xg, x1, X but with alternate signs
e(x) = f(x) — p(x) =¥ —a— bx so

ex)=e"—b=e1—-b=0

x1=1Inb

x; ~ 0.16144
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Fitting the line (cont)

@ How do we find a?

e The difference (positive / negative) should be symmetric

@ The error function should at an extrema at xp, X1, xo but with alternate signs
o e(x) =f(x)—p(x) =e“—a— bxso

0 é(x)=e"—b=>e"—-b=0

@exg=1Inb

e x;1 ~0.16144

0 e(x1)=—e(x)=>e"—a—-byg=—e+a+b

0 a= D% ~1.2643

o p(x) =~ 1.2643 + 1.1752x

@ The maximum error would be e(x1) = ||f(x1) — p(x1)||oc =~ 0.2788
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Approximation - Discussion

Example showed a way to construct a solution.

What if we did not know the appropriate n?

If we make n too small there is a lack of fit

If we make n too large the fit will be poor (too much wiggle)
Could we estimate d(f,m,)?

Maybe not, but a lower bound might be possible
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Divided Differences

@ Slight detour

@ Divided differences are frequently used to compute coefficients in
interpolation polynomials.

@ Recursive formulation. Given a set of data points (xo, o), - - -, (Xks Yk)

Dvsts s Yol = s - oo Yoyl
Xy+j — Xy

[va--a_)/v—i—j] =

and
W=y vel0,... k}
@ The recursive formulation is computationally effective
@ The first few terms

ol = x
— =
ooyl = =%

isyel—[vo.y] o %

_ ) — ) — X2—X1 10

[yan17.y2] - Xo—Xp o X2 —Xo

— Yo2—W1 o Yi—Yo

(x2—x1)(x2—x0) (x1—x0)(x2—x0)
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Estimating a lower bound

@ Assume we have a function f : [a, b] — R
@ We will use divided differences to compute bounds

@ Lets assume we have three points xp, X1, x as p is linear

p[X07X17X2] =0

i.e. the gradient does not vary

@ we can also write

f(x0) f(x1) f(x)
(x0 — x1)(x0 — x2) " (x1 — x0)(x1 — x2) " (x2 — x0)(x2 — x1)

f[X07 X1, X2] —

SO
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Estimating lower bound (cont.)

f[X07X17X2] - f[X07X17X2] - p[X07X17X2]
= (f_p)[X07X17X2]
= f(Xo))—(P(Xo) ; f(Xl))—(P(Xl) ( f(X2))—(P(X2) )
o) —p(o) | o)) i P sy e
w’(xo) w’(x1) w’(x2)

where
W' (x) = (x = x0)(x = x1)(x — x2)
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Estimating lower bound (cont.)

@ We can then estimate a bound

Flxo, 1, ] < [IF — ||( S S )
0522l =TT Pllee \TwiGo) T w/la)] w00

or
|f[X07 X1, X2]|
1 1 1
W) T Wl T W)l

I = pllec =

@ the polynomial on left hand side is arbitrary so d(f,7,) = minper, ||f — p||oo

@ right hand side is purely based on f and three points, so we can estimate the
value
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Back to our example

@ Lets use f(x) = €* in the interval [—1,1].

@ Pick say -1, 0, 1 as our points

f[x0, X1, %] = %f(—l) — f(0) + %f(l)
and
1 1 1 1 1
W) W) W) 2 1T
thus
d(F.my > [N =20 +7()

@ the bound is then d(f,m1) = 0.2715, which is not too far away from 0.2788

that was achieved.

@ the lower bounds says that we cannot estimate ¥ much better than .3 in the

4

interval -1,1 with a linear approximation, which is very valuable.
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Chebyshev polynomials

@ Chebyshev polynomials are sequences of polynomials that are defined
recursively.

@ The first kind of a Chebyshev polynomial is denoted Ty (x) and given by
Tn(x) = cos(narccos x)

looks trigonometric but can be used to general polynomials. |.e

To(X) = 1
Ti(x) = x
Ta(x) = 2x% —1(as cos(20) = 2cos?(0) — 1)
T3(x) = 4x3—3x
Tnr1(x) = 2xTn(x) — Ty—1(x), forn>1
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Chebyshev Polynomials

@ The polynomials are orthogonal over the interval [—1, 1] over a weight of
(1 — x?)71/2 so that

—
PTTM, 1S
V]'_Xz 73’ [:j:
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Chebyshev Polynomials

@ The polynomial Ty(x) has N zeros in the internal [—1,1] at the points

x:cos(ﬂ(kTJr%))forkGO,...,N—l

@ There is a similar set of extrema at x = cos(”—,\f‘)
— Tolx) — Tix) — o) — Tox) = Ta(x)
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Chebyshev Approximation

@ For periodic functions. f(x), over the interval [—1,1] an N coefficient

approximation is

G = & Skmo %) T5(xk) 1
= 2 2/:—01 f (cos Tr(k,:,ri)> cos W(k,\TE)

@ The approximation is then

f(X) ~ p(X) = [Z Ck Tk(X) — %Co
k=1

@ which is an exact match in terms of zero crossings

o the errors are uniformly distributed over [—1,1]
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Warping coordinated

o If the domain is different from [—1, 1] the variable can be changed from [a, b]

y:x—%(b—a)
2(b—a)

the approximated can be mapped forward / back as needed
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Example of using Checyshev Points for Control

(a) Test case 1
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Truncated Power Series

@ The uniform error of the Chebyshev functions/series implies that one can use

a limited number of terms

@ Say you have a series

more than 30 terms

Math for Robotics

2

+x
8

X
4

@ If we use a Chebyshev approximation

X3+
6

©@ Compute enough terms to have e < T across series

© Change variable to [—1, 1]

© Find Chebyshev series that satisfy error
© Truncate series using ¢k Tx(x) as an estimated error residential
@ Convert back to polynomial form

@ Convert back to original coordinate range

@ For the example the reduction is from 30 to 9 terms
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fitting a polynomial function and trying to achieve ¢ < 10~° would require
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Functional approximation and interpolation

@ Frequently using a functional approximation is much more effective and it
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adds semantic information (a class) to the data approximation

@ The are quite a few functional approximation forms
@ Giving a few examples from polynomial, 7,, form to periodic function

@ A key consideration is what domain knowledge is available to guide model

selection
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Small example

1
Depth ,
) Primitive Detection > Abstraction
Point '_»"j[
Cloud
Mesh
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Questions

Questions
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