CSE 276A Introduction to Robotics 🐋

• Henrik I Christensen

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

Lecturer

- Henrik I Christensen
- Professor @ CSE
- Director of Robotics cri.ucsd.edu
- Theme: "Real Robots for Real Applications"
- Research: Autonomous Driving & Home Robots
- History: first autonomous vacuum cleaner, numerous robots in industry use today
- Spin-offs: Robust.AI, Robo-Global, SMC-II, ...

Welcome

- Lecturer / TAs
- What is a robot?
- A bit of history
- Example use-cases
- Course content

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

TAs

- Seth Farrell <u>swfarrel@ucsd.edu</u>
- Narayan Elavathur Ranganatha (Naru) <u>nelavathurranganatha@ucsd.edu</u>
- Office Hours to be decided

JACOBS SCHOOL OF ENGINEER DIVISION OF SOCIAL SCIENCES JACOBS SCHOOL OF ENGINEERI

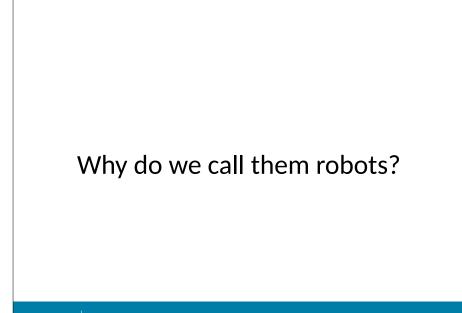
Lectures

- Tuesday & Thursday 3:30-4:50
- All lectures audio pod-cast and available on canvas
- All material on canvas
- Any and all feedback, ... is most welcome

What is a robot?

• A goal oriented machine that can sense, plan and act

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE


Characteristics of robots

- Consistent
- Accurate
- Reliable
- Do things that people
 - can't do
 - space, deep sea
 - won't do
 - boring, dull
 - shouldn't do
 - dangerous, unhealthy, risky

JACOBS SCHOOL OF ENGINEERI DIVISION OF SOCIAL SCIENCES

A bit of background and history

JACOBS SCHOOL OF ENGINEERIN

Robot: the word

 In 1921, the Czech author Karel Capek produced his best known work, the play *R.U.R. (Rossum's Universal Robots)*, which featured machines created to simulate human beings.

 The term "robot" was derived from the Czech word robota, meaning "work", "forced workers" or "slaves."

 His robots eventually rebelled against their creators, ran amok, and tried to wipe out the human race.

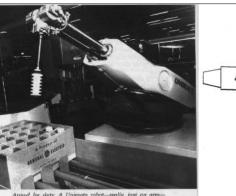
Karel Čapek

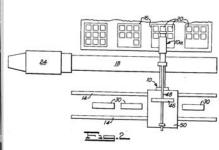
UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

JACOBS SCHOOL OF ENGINEERIN DIVISION OF SOCIAL SCIENCES UCSan Diego CONTEXTUAL ROBOTICS INSTITUTE

1921

Joe Engleberger (1925-2015)


Anneel for duty. A Unimate robot—really, just an arm picks up and puts down parts in a General Electric factory.

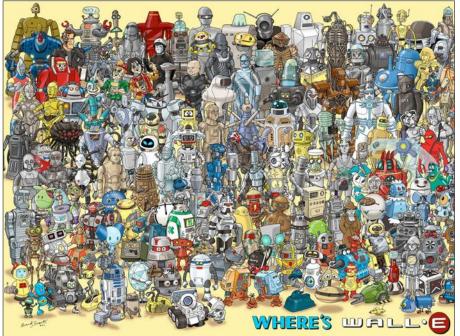

Unimation Inc. 1956

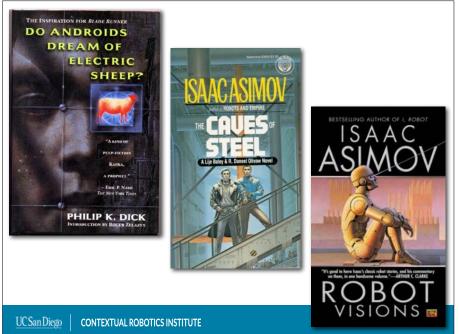
UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

Arried for story A R picks up and puts dea

Anned for duty. A Unimate robot—really, just an arm picks up and puts down parts in a General Electric factory.

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE


1956

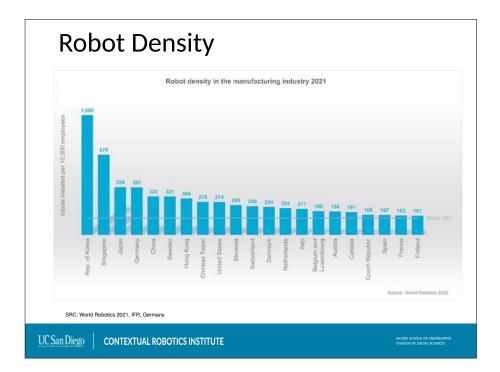


The Laws of Robotics

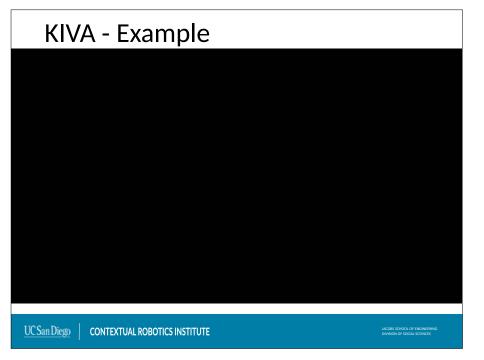
- First Law: A robot may not injure a human being, or, through inaction, allow a human being to come to harm.
- <u>Second Law:</u> A robot must obey orders given it by human beings, except where such orders would conflict with the First Law.
- <u>Third Law</u>: A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

1940-1992

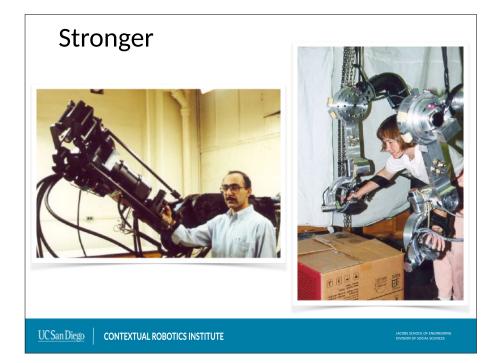

What do you think of as a robot?

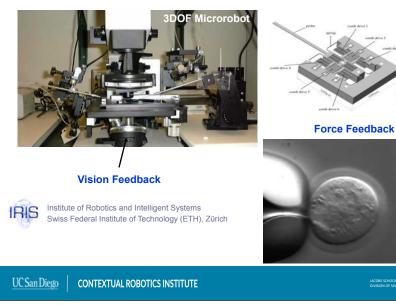
UC San Diego CONTEXTUAL ROBOTICS INSTITUTE


How big is the industry penetration?

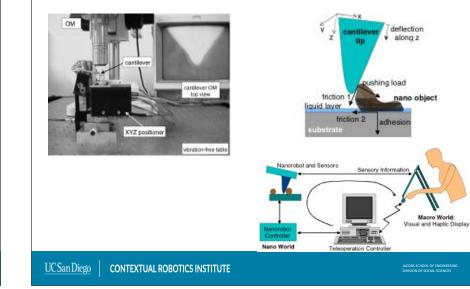
- How many robots are in use in industry / worker
- Say NN robots / 10,000 workers
 - In automotive
 - In general
 - In US
 - In China?

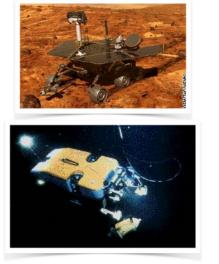
JACOBS SCHOOL OF ENGINEERI




Consider robots as **extenders** of human ability

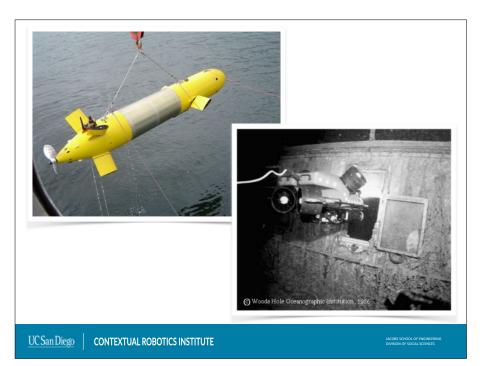
JACOBS SCHOOL OF ENGINEERIN DIVISION OF SOCIAL SCIENCES




Let us handle tiny things

and even nano things

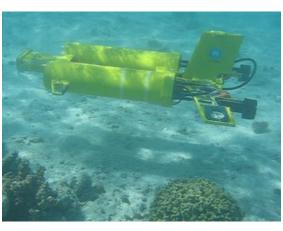
Extending our reach



UCSan Diego CONTEXTUAL ROBOTICS INSTITUTE

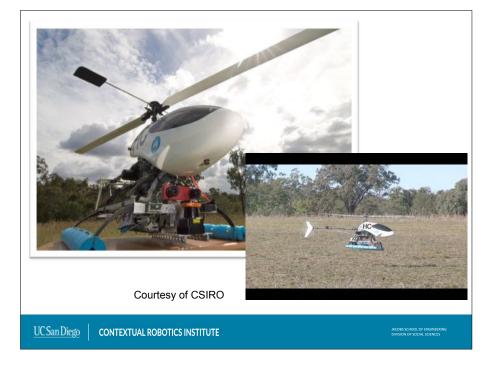
COBS SCHOOL OF ENGINEERING VISION OF SOCIAL SCIENCES

Extending exploration



Robots underwater

Courtesy of CSIRO



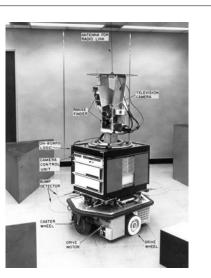
UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

COBS SCHOOL OF ENGINEERING

UCSan Diego CONTEXTUAL ROBOTICS INSTITUTE

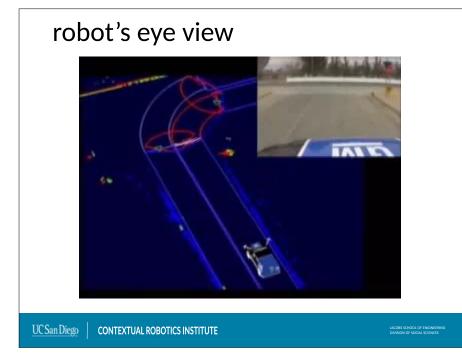
Mobile robots

1950

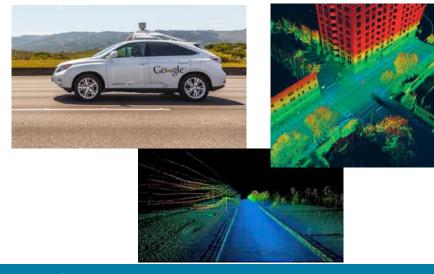

A light seeking "tortoise".

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

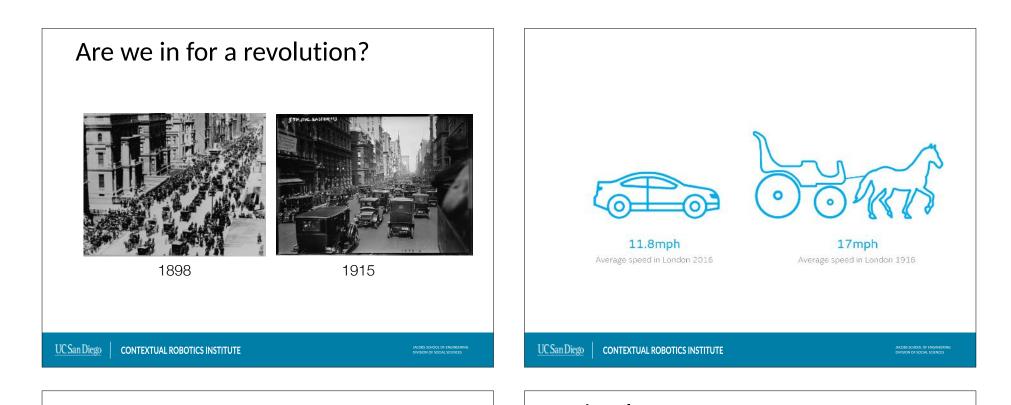
Morovec's Stanford rover


1964

SRI's Shakey



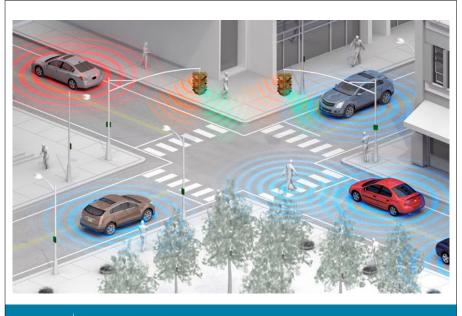
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><image><page-footer>



The Google car

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

JACOBS SCHOOL OF ENGINEERING

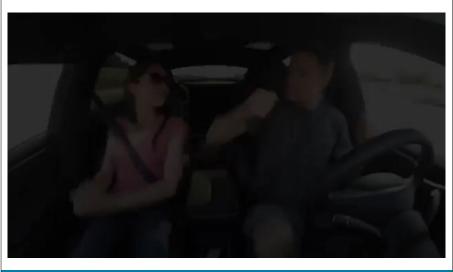


<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><image><image><image><image><image><image><image><image><image><image><image>

UCSan Diego CONTEXTUAL ROBOTICS INSTITUTE

ACOBS SCHOOL OF ENGINEERIN

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE


JACOBS SCHOOL OF ENGINEERING DIVISION OF SOCIAL SCIENCES

A small challenge

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

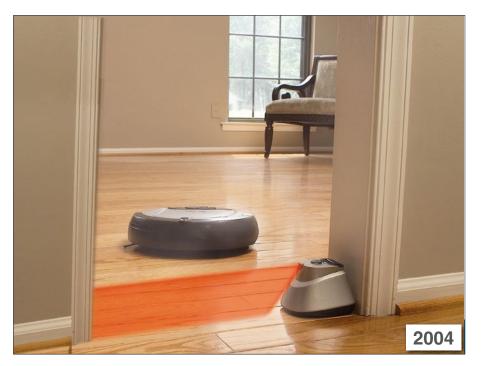
How safe is this?

UCSan Diego CONTEXTUAL ROBOTICS INSTITUTE

JACOBS SCHOOL OF ENGINEE DIVISION OF SOCIAL SCIENCES

Autonomous Driving @ UCSD

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE


JACOBS SCHOOL OF ENGINEERIN

Spot

- Now a dog like commercial platform
- Very impressive performance

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

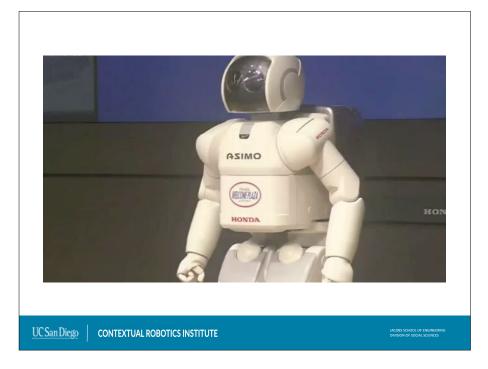
Before Roomba (Grinter & Christensen, 2009)

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

CERO System

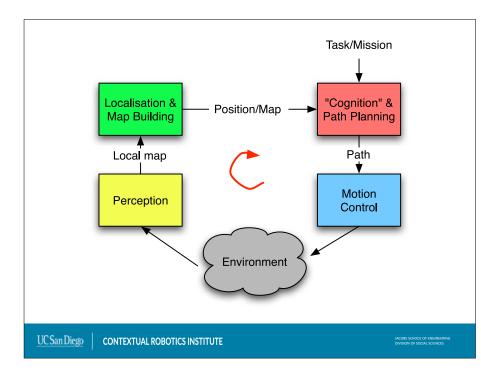
- Mobile platform
- Box for deliveries
- A simple user interface
- Design is crucial

(Eklundh & Christensen, 2006)



CERO Interface

(Eklundh & Christensen, 2006)


Questions?

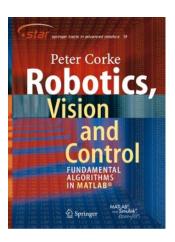
CSE276A Class Structure

- Introduction
- Kinematics / Mobile Robots
- Sensing / Estimation / GPS
- Image Processing
- Mapping
- Visual Tracking / Servoing
- Geometric Spaces / Path Planning
- Grasping and Hands
- Human Robot Interaction
- Perspective

JACOBS SCHOOL OF ENGINEERIN DIVISION OF SOCIAL SCIENCES JACOBS SCHOOL OF ENGINEER

Class Material

- Qualcomm RB5 Platform
- MegaBot mBot
- Power Cell
- Robot Operating System
- 1-2 students / robot



JACOBS SCHOOL OF ENGINEER DIVISION OF SOCIAL SCIENCES

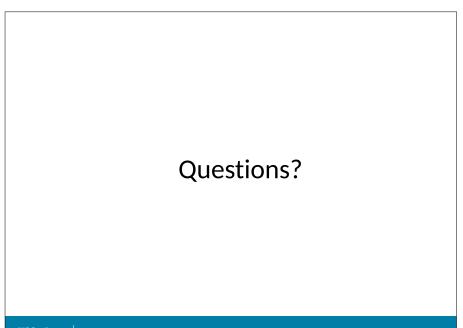
Class Material

- Robotics, Vision and Control, P. Corke, Springer Verlag (2011, 2017, & 2023)
 - Most material adopted from the book
 - Will provide fairly comprehensive lecture notes
 - Most programming in Python / C++
 - ROS Robot Operating System

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE

Homework

- A new homework every two weeks
 - 1. Drive the robot to 5 way points
 - 2. Use vision to drive the robot to a landmark
 - 3. Build a map of the environments
 - 4. Navigate within your map
 - 5. Integrate to achieve a Roomba like system!
 - THE END


JACOBS SCHOOL OF ENGINEER

Schedule

Date	Week	Topic	Corke	Quiz	Assignm
Sep 28	1	Introduction to Robotics	Chapter 1		
Oct 3	2	Space and Time	Chapter 2+3		
Oct 5	2	Robot Operating Systems (part b)			
Oct 10	3	Mobile Robotics / Test system for class	Chapter 4		
Oct 12	3	Sensing / GNSS			
Oct 17	4	Images	Chapters 10		A1: Basic motion
Oct 19	4	Image Processing	Chap 12 and 13		
Oct 24	5	Visual Servoing	Chapter 15		
Oct 26	5	Kalman Filtering SLAM	Chapter 6		
Oct 31	6	Localization	Chapter 6		A2: Closed loop/td>
Nov 2	6	No Class			
Nov 7	7	KALMAN / SLAM			
Nov 9	7	Extended Kalman Filter			
Nov 14	8	Planning - Geometry / Sampling based methods			A3: Localization
Nov 16	8	Grasping & Hands	Chapter 8		
Nov 21	9	Human Robot Interaction			
Nov 23	9	No lecture - Thanksgiving			
Nov 28	10	Architectures			A4: Planning
Nov 30	10	No Lecture			
Dec 5	11	Robot Ethics			
Dec 7	11	Wrap-up			A5: Coverage Robot

UCSan Diego CONTEXTUAL ROBOTICS INSTITUTE

JACOBS SCHOOL OF ENGI DIVISION OF SOCIAL SCIE

Teaching team

- Lecturer:
 - Henrik I Christensen hichristensen@ucsd.edu

• TA:

- Seth Farrell swfarrel@ucsd.edu
- Narayan Elavathur Ranganatha (Naru) <u>nelavathurranganatha@ucsd.edu</u>

UC San Diego CONTEXTUAL ROBOTICS INSTITUTE